227 research outputs found

    Construction and Reactivity Screening of a Surface Composition Gradient for Combinatorial Discovery of Electro-Oxidation Catalysts

    Get PDF
    Materials possessing gradients in composition or structure are of interest for a range of applications, including the construction of functionally graded structural materials, as novel sensor and actuator platforms, and to control the site-specific binding of proteins and cells on surfaces. Gradients can also be used as sample libraries for combinatorial materials discovery that present an extremely dense sample set

    Three-Dimensional Atom Probe Tomography of Oxide, Anion, and Alkanethiolate Coatings on Gold

    Get PDF
    We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br− and I− were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems

    Grating-Coupler Assisted Infrared Reflection Absorption Spectroscopy for the Characterization of Organic Thin Films

    Get PDF
    We demonstrate how grating-coupler assisted infrared reflection absorption spectroscopy can be used to simultaneously determine the chemical identity and relative thickness of organic thin films. With a grating substrate, a threshold anomaly associated with passing off of the −1 diffracted order occurs at grazing angles of incidence, resulting in a sharp absorbance in the infrared. The position of this peak is sensitive to the grating geometry as well as the dielectric environment near its surface. Thus, shifts in the peak position can be used to determine the relative thickness of adsorbed films or quantify molecular adsorption events. To illustrate the characteristics and sensitivity of this phenomenon, several samples were prepared and tested, including self-assembled alkanethiolate monolayers with 11-mercaptoundecanoic acid, 11-mercapto-1-undecanol, decanethiol, and a covalently linked layer of bovine serum albumin on a commercial, gold-coated grating. For these samples, the position of the threshold absorbance peak shifted to lower wavenumbers as film thickness increased, which is consistent with calculated shifts based upon an increasing refractive index at the interface. The sensitivity of this shift was measured to be 3.7 cm-1 nm-1. These results illustrate how a grating substrate can be exploited in a standard infrared reflectance measurement to provide additional information about the relative thickness of adsorbed surface films

    Rapid and Reversible Generation of a Microscale pH Gradient Using Surface Electric Fields

    Get PDF
    We report a method for the rapid and reversible generation of microscale pH gradients using a spatially varied electric field. A linear gradient in electrochemical potential is produced on an electrode surface consisting of a platinum catalyst layer on indium−tin oxide-coated glass by the application of two different potential values at spatially distinct surface locations. The resulting potential gradient drives the oxidation and reduction of water at different rates along the surface, as dictated by the local applied potential. A nonuniform distribution of pH in the neighboring solution results due to the variation in surface reaction rates. The extent and magnitude of the pH gradient can be controlled by the appropriate selection of applied potential values. In addition, the gradient can be rapidly turned on or off and reversibly switched between various profiles. The size of the pH gradient can be readily modified by changing the dimensions of the electrode and contact pads to allow integration into chip-scale devices. Characteristics of the pH gradient are described, including experimental and theoretical evidence of significant improvement in time response over competing methods for the generation of microscale pH gradients

    A Multi-electrode Electrochemical and Scanning Differential Electrochemical Mass Spectrometry Study of Methanol Oxidation on Electrodeposited PtxRuy

    Get PDF
    Methanol electro-oxidation was studied on a series of electrodeposited PtxRuy catalysts constructed as multielement band electrodes. A combination of electrochemical and scanning differential electrochemical mass spectrometry measurements were performed to evaluate the composition-dependence of methanol oxidation, methanol decomposition, CO2 current efficiency, and the product distribution at 25 and 50 °C. At 25 °C, cyclic voltammetry revealed that the presence of Ru led to enhanced methanol oxidation rates over that of pure Pt. Methanol decomposition showed a similar composition-dependence. Mass spectrometry measurements revealed the evolution of HCOOH and CO2 during methanol oxidation and allowed indirect determination of H2CO produced. Notably, these products were not observed during methanol decomposition. The most active electrode compositions and the highest instantaneous current efficiencies for the formation of CO2 were found to depend on several factors. At 25 °C, the maximum activity was 10% Ru, while at 50 °C the most active composition increased to 25% Ru. Pure Pt had the highest instantaneous current efficiency for CO2 at both temperatures. The product distribution reflected high CO2 evolution for Pt, with an increasing fraction of the product emerging as H2CO at higher Ru content. Increasing the temperature improved the CO2 current efficiency for all electrode compositions. These results confirm that methanol oxidation occurs though a parallel reaction pathway on PtxRuy electrodes. In addition, the balance between the different reaction pathways depends on several factors, including Ru composition and temperature
    • …
    corecore